

INTERNATIONAL SYMPOSIUM

Recent Advances in Structural Design in Regions of Low-to-Moderate Seismicity

Simplified Shear Wall Detailing in Low-to-moderate Seismicity Regions

SWINBURNE UNIVERSITY OF TECHNOLOGY

> MALAYSIA AUSTRALIA

PhD (HKU) | BEng (Malaya) Lecturer | Swinburne University of Technology (Sarawak Malaysia) <u>dlooi@swinburne.edu.my</u>

28 June 2019

Dr. Daniel Looi

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion

The **prescriptive approach** in conventional seismic codes of practice

Example: Eurocode 8 (EC8) mandating ductility class medium (DCM) detailing by tying with seismic hazard level

For building importance class III with importance factor, $\gamma_I = 1.2$ & soil factor, S = 1.35

Restricting the use of strength to trade off with ductility

The code 'should' allow engineers to have the choice of increasing the design strength rather than mandating ductility design.

Providing an "exit" for engineers

- International seismic codes (e.g. EC8) is restrictive in tying ductile detailing with level of seismicity.
- This work is produced with referenced to EC8 to assist engineers in dealing with ductile detailing.
- Hong Kong has many wall-dominated buildings (≥ 50% base shear taken by walls), hence simplified shear wall ductile detailing is discussed this presentation.

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion

Defining moment-curvature

Elastic bending theory: M/I = f/y = E/R, where curvature $\varphi_v = 1/R$.

In plastic region, it is normally derived by rotation-to-plastic hinge length ratio ($\varphi_p = \theta_p / L_p$)

7

Defining curvature ductility

Curvature ductility

$$\mu_{\varphi} = \varphi_{\rm u} \, / \, \varphi_{\rm y}$$

8

Local curvature ductility demand

Behaviour factor for walls in EC8:

Table 5.1: Basic value of the behaviour factor, q_{0} , for systems regular in elevation

STRUCTURAL TYPE	DCM	DCH
Frame system dual system, coupled wall syst	em 3,0 <i>α</i> u/α1	4,5 <i>α</i> ₀∕α₁
Uncoupled wall system	3,0	4,0 <i>α</i> ₀/α₁
Torsionally flexible system	2,0	3,0
Inverted pendulum system	1,5	2,0

Overstrength,
$$\alpha_u / \alpha_1 = 1.2$$

Behaviour factor, $q_0 = 3.0 \alpha_u / \alpha_1 = 3.6$

Account for transfer structure, $q_0 = 0.8(3.6) = 2.9$

Local curvature ductility demand

$$\mu_{\varphi} = 2q_{o} - 1 \text{ for } T_{1} \ge T_{C}$$

$$\mu_{\varphi} = 1 + 2(q_{o} - 1) T_{C}/T_{1} \text{ for } T_{1} < T_{C}$$

Class of rebars according to EC2 (or very similar in CS2 of HK)

ANNEX C (Normative)

Properties of reinforcement suitable for use with this Eurocode

C.1 General

(1) Table C.1 gives the properties of reinforcement suitable for use with this Eurocode. The properties are valid for temperatures between -40°C and 100°C for the reinforcement in the finished structure. Any bending and welding of reinforcement carried out on site should be further restricted to the temperature range as permitted by EN 13670.

Table C.1: Properties of reinforcement

Product form	Bars a	Bars and de-coiled rods		Wire Fabrics			Requirement or quantile value (%)
Class	А	В	с	A	В	С	-
Characteristic yield strength f or f _{0,2k} (MPa)	rk -		400 to 600			5,0	
Minimum value of $k = (f_y/f_y)_k$	≥1,05	≥1,08	≥1,15 <1,35	≥1,05	≥1,08	≥1,15 <1,35	10,0
Characteristic strain at maximum force, ε_{uk} (%)	≥2,5	≥5,0	≥7,5	≥2,5	≥5,0	≥7,5	10,0
Bendability	Be	Bend/Rebend test			-		
Shear strength		- 0,25 A f _{vk} (A is area of wire)					Minimum
Maximum Nominal deviation from bar size (m nominal mass ≤ 8 (individual bar > 8 or wire) (%)	m)		5,0				

Class B rebar

(common in Malaysia and Hong Kong)

*Note that f_{yk} is between 400 to 600 MPa

Note: The values for the fatigue stress range with an upper limit of βf_{yk} and for the Minimum relative rib area for use in a Country may be found in its National Annex. The recommended values are given in Table C.2N. The value of β for use in a Country may be found in its National Annex. The recommended value is 0,6.

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion

Parametric boundaries

- Wall thickness (b_c): 200 mm to 1000 mm
- Cover: 20 mm to 60 mm
- Longitudinal rebar diameter (d_{bL}) : 10, 12, 16, 20, 25 mm
- Hoop rebar diameter (d_{hoop}): 10, 12, 16 mm
- Steel characteristic yield strength (f_{vk}): 500 MPa
- Concrete grade (f_{cu,k}): 25 to 90 Mpa
- Steel safety factor (γ_s): 1.15
- Concrete safety factor (γ_c): 1.5
- Steel design yield strain (ε_{vk}): 0.002
- Normalised axial load (v_d): 0.1 to 0.4

Critical plastic hinge height (h_{cr})

 $h_{\rm cr} = \max\{l_{\rm w}; h_{\rm w} / 6\} \le 2 l_{\rm w}$

 $\leq 2 h_{\rm s}$

*h_s is clear storey height

Critical plastic hinge height (h_{cr})

Example:

- Taking minimum wall thickness 200 mm
- Minimum wall length is 800 mm
- At least 10 storeys for wall buildings, $h_w \ge 30$ m

Boundary element length (l_c)

16

Confinement to achieve the curvature ductility in shear walls according to EC8

Confinement capacity, $C_c \ge Confinement$ demand, C_d

 $\alpha \,\omega_{\rm wd} \geq [30 \,\mu_{\varphi} \,(v_{\rm d} + \omega_{\rm v}) \,\varepsilon_{\rm sy,d} \,b_{\rm c}/b_{\rm o}] - 0.035$ $(\alpha_{\rm n} \,\alpha_{\rm s}) \,\omega_{\rm wd} \geq [30 \,\mu_{\varphi} \,(v_{\rm d} + \omega_{\rm v}) \,\varepsilon_{\rm sy,d} \,b_{\rm c}/b_{\rm o}] - 0.035$

- Where α_n = confinement effective factor for longitudinal engaged bar spacing
 - $\alpha_{\rm s}$ = confinement effective factor for stirrups spacing
 - ω_{wd} = mechanical volumetric ratio of confining hoops within the critical regions
 - μ_{ϕ} = curvature ductility
 - $v_{\rm d}$ = normalised design axial force
 - $\omega_{\rm v}$ = mechanical ratio of vertical rebars in the web
 - $\varepsilon_{\rm sy,d}$ = design value of tension steel strain at yield
 - $b_{\rm c}/b_{\rm o}$ = width of gross sectional area to width of confined core 17

Steps explained in simple terms:

STEP 1:

Ductility demand (μ_{φ}) Required input: q_{o}, T_{1} , RSA graph

$\mu_{\varphi} = 2q_{\circ} - 1 \text{ for } T_1 \ge T_C$ $\mu_{\varphi} = 1 + 2(q_{\circ} - 1) T_C/T_1 \text{ for } T_1 < T_C$ *Note: Multiply by 1.5 for Class B rebars

T_C is typically about 0.25 s to 0.80 s for all ground types

Estimating the structural period of wall buildings (in HK)

Su RKL, Chandler AM, Li JH and Lee PKK (2003). **"Dynamic testing and modelling of existing buildings in Hong Kong"**, *HKIE Transactions*, 10(2): 17-25.

 $T_1 = 0.01 H_{\rm B}$ to $0.02 H_{\rm B}$

Say 20 storeys, 3 m storey height, hence $H_B = 60$ m

 $T_1 = 0.6$ s to 1.2 s

(typically 0.9 s)

 $> T_C = 0.25$ s to 0.80 s

$$\mu_{\phi} = 2q_{o} - 1$$
 for $T_{1} \ge T_{C}$

 $\mu_{\varphi} = 1 + 2(q_0 - 1) T_C / T_1 \text{ for } T_1 < T_C$

*Note: Multiply by 1.5 for Class B rebars

Local curvature ductility demand (Class B rebar)

 $\mu_{\varphi} = 2q_{o} - 1$ for $T_{1} \ge T_{C}$

Behaviour factor for walls:

$$\alpha_{\rm u}/\alpha_1 = 1.2; q_{\rm o} = 3.0 \ \alpha_{\rm u}/\alpha_1 = 3.6;$$

Account for transfer structure, reduce by 20%

Hence, $q_0 = 3.6 (0.8) = 2.9$

 $\mu_{\varphi} = (2q_0 - 1) \, 1.5$ *Note: Multiply by 1.5 for Class B rebars $\mu_{\varphi} = [2(2.9) - 1] \, 1.5$

= 7.1

STEP 2:

<u>Confinement demand</u> (C_d)

Required input:

 $\mu_{\varphi}, v_{\mathsf{d}}, \omega_{\mathrm{v}}$

 $C_{\rm d}$ is dependent on the normalized design axial force ($v_{\rm d}$) and mechanical ratio of vertical rebar ($\omega_{\rm v}$)

22

Figure above shows the confinement demand for an example of shear walls with normalized design axial force of $v_d = 0.4$

The input parameters (α_n , α_s , ω_{wd}) to arrive at C_c is slightly more complicated, it will be explained in next few slides.

The effective confinement area for confinement capacity estimation

THEORETICAL STRESS-STRAIN MODEL FOR CONFINED CONCRETE

By J. B. Mander,¹ M. J. N. Priestley,² and R. Park,³ Fellow, ASCE

Journal of Structural Engineering

Vol. 114, No. 8, August, 1988

Effective confined area of cross-section at the hoop level of column

Cross-section of column

$$A_{\text{parabola}} = 2/3 \ b_{\text{i}} \ (b_{\text{i}}/4)$$

= $b_{\text{i}}^2/6$
 $A_{\text{eff,n}} = b_{\text{o}} \ h_{\text{o}} - \sum_{\text{i}}^{\text{n}} \ (b_{\text{i}}^2/6)$

Combined area reduction factors

 $A_{\text{eff}} = A_{\text{eff,n}} \text{ x (reduction along longitudinal axis)}$ $= [b_{\text{o}} h_{\text{o}} - \sum_{\text{i}}^{\text{n}} (b_{\text{i}}^{2}/6)] [(b_{\text{o}} - \text{s}/2)/b_{\text{o}} (h_{\text{o}} - \text{s}/2)/h_{\text{o}}]$

Normalised by $b_{o} h_{o}$

$$\alpha = [1 - \sum_{i}^{n} (b_{i}^{2}/6)] [(1 - s/2b_{o}) (1 - s/2h_{o})]$$

$$= \alpha_n \alpha_s$$

<u>Confinement capacity</u> (C_c)

Required input: $\alpha_n \alpha_s, \omega_{wd}$

 α_n is controlled by the horizontal distance (b_i) between consecutive engaged vertical bars

Figure above shows the confined core area reduction factor a_n

 $b_{e}=b_{u}$

STEP 3b:

 α_n

 $\alpha_{\rm s}$

<u>Confinement capacity</u> ($C_{\rm c}$) Required input:

 ω_{wd}

 α_s is controlled by the vertical spacing (s) of hoops, however s is controlled min{ $b_o/2$; 175; $8d_{bL}$ }, which resulted in a generic outcome within the boundary element of shear walls.

Figure above shows the confined core area reduction factor α_{s}

 $\omega_{\rm Wd}$ is controlled by vertical hoop diameter and distance relative to the confined core, with consideration of steel and concrete design strength.

Figure above shows the confinement capacity C_c for $f_{vd}/f_{cd} = 16.3$ (for $f_{vk} = 500$ MPa, $f_{ckcube} = 50$ Mpa) 31

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion

Demand

Capacity

Reconciliation

- Hoop spacing (s) and vertical rebar spacing (b_i) of 150 mm is reasonable and makes little sense to decrease them.
- Making shear walls thicker is not ideal.
- Hence, suggest to use 16 mm diameter hoop. (or bundled rebars)

Capacity

Proposal for a simplified RC wall building

<u>RC wall</u>

- Keep boundary element with dimensions, A_g ≥ 400 thickness x 600 length mm²
- Use hoop rebar diameter, $d_{\text{hoop}} \ge 16 \text{ mm}$
- Use longitudinal rebar diameter, $d_{bL} \ge 20 \text{ mm}$
- Keep hoop spacing, $s \le 150 \text{ mm}$
- Average $\alpha_n = 0.80$
- Average $\alpha_s = 0.70$
- Keep b_i spacing ≤ 150 mm

Corroborate with HK CoP 2013

This study recommends 1.5 b_1 with b_1 is 400 mm, hence boundary element length is min. of 600 mm

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion

Limitations and assumptions

- The graphs are developed for wall buildings under EC8 DCM requirement;
- Wall thickness range from 200 to 1000 mm (note that many parameters are extremely sensitive for wall size below 400 mm);
- The cross-sectional aspect ratio is $l_w / b_c \ge 4$ for wall;
- The local ductility demand was based on Class B rebar as per EC2, which is common in Malaysia and Hong Kong;
- The characteristic steel yield strength are for 500 MPa as per Class B in EC2;
- The characteristic concrete cube strength range from 25 MPa to 90 MPa;
- The hoop diameter considered are for 12 mm and 16 mm;
- The hoop spacing (s) and distance (b_i) between consecutive vertical rebar is fixed at 150 mm for practicality.

Content

- 1. Introduction
- 2. Curvature ductility demand
- 3. Tools for simplified shear wall local ductility detailing
- 4. Proposal for deemed-to-comply simplified solution
- 5. Limitations and assumptions
- 6. Conclusion and recommendation

Conclusion

- 1. The motivation of this study is to give engineers guidelines in simplified ductile detailing (if mandated in seismic code);
- 2. The mysterious confinement detailing equations in EC8 were derived and explained based on Mander et al. (1988);
- 3. Simplified detailing aid by graphs were presented;
- 4. Designers are reminded to review the limitations before using the graphs;
- 5. Proposal was put forward for simplified deemed-to-comply shear walls and compared to HK CoP 2013.

Recommendation: control the axial load ratio

Tested effects of normalized axial force (v_d) on shear walls

Looi, D.T.W.; Su, R.K.L.; Cheng, B. and Tsang, H.H. (2017). "Effects of axial load on seismic performance of RC walls with short shear span", *Engineering Structures*, 115, pp. 312-326.

INTERNATIONAL SYMPOSIUM

Recent Advances in Structural Design in Regions of Low-to-Moderate Seismicity

End of Presentation on

Simplified Shear Wall Detailing in Low-to-moderate Seismicity Regions

Dr. Daniel Looi

PhD (HKU) | BEng (Malaya) Lecturer | Swinburne University of Technology (Sarawak Malaysia) <u>dlooi@swinburne.edu.my</u>